
Scheduling Parallel Jobs for Multiphysics Simulators

Renata M. Carvalho, Ricardo M. F. Lima, Adriano L. I. Oliveira, and Felix C. G. Santos

Abstract—Real problem simulations involving physic phe-
nomena can demand too much execution time. To improve
the performance of these simulations it is necessary to have
an approach to parallelize the processes that compose the
simulation. MPhyScaS (Multi-Physics and Multi-Scale Solver
Environment) is an environment dedicated to the automatic
development of simulators. Each MPhyScaS simulation de-
mands a great amount of time. To parallelize MPhyScaS
simulations, the approach used should define a hierarchical
parallel structure. The aim of the work herein presented
is to improve the performance of clusters in the processing
of MPhyScaS simulations which are composed by a set of
dependent tasks by scheduling them. The presented model is
based on Genetic Algorithms (GA) to schedule the parallel tasks
following MPhyScaS architecture dependence restrictions. The
communication between processors must also be considered in
this scheduling. Therefore, a trade off must be found between
the execution of processes and the time necessary for these
processes to communicate with each other.

I. INTRODUCTION

Scheduling is a decision-making process that is used on
a regular basis in many systems. It deals with the allocation
of resources to tasks over given time periods and its goal
is to optimize one or more objectives. Scheduling plays an
important role in most systems as well as in most information
processing environments [1]. For this work, the resources are
the processors available for executing, and the tasks are the
processes that must be executed.
An effective way to extract the most performance and

scalability out of the parallel application is to exploit both
task parallelism and data parallelism [2]. With this approach,
an application consists of tasks organized in a Directed
Acyclic Graph (DAG) in which each edge corresponds to
a precedence relation between two tasks, implying possible
data communication. The common approach to schedule
DAG’s is the task parallel paradigm, which assigns one task
to one processor. The scheduling consists on the distribution
of the DAG nodes among the machine nodes, so that the
makespan is minimum.
Early scheduling algorithms [3], [4], [5] do not take

communication into account, but due to the increasing gap
between computation and communication performance of
parallel systems, the consideration of the communication
became more important [6].
MPhyScaS (Multi-Physics and Multi-Scale Solver En-

vironment) is an environment dedicated to the automatic

Renata Medeiros de Carvalho, Ricardo Massa Ferreira Lima, and Adriano
Lorena Incio de Oliveira are with the Center of Informatics, Federal Uni-
versity of Pernambuco, Brazil (email: rwm@cin.ufpe.br, rmfl@cin.ufpe.br,
alio@cin.ufpe.br).
Felix Christian Guimaraes Santos is with the Department of Mechanics,

Federal University of Pernambuco, Brazil (email: fcgs@demec.ufpe.br).

development of simulators. It simulates real problems involv-
ing a set of different physic phenomena. Each MPhyScaS
simulation demands a great amount of time. To improve the
performance of MPhyScaS simulation it is necessary to have
an approach to parallelize the processes that compose the
simulation. This approach should define the distribution of
processes, and their relationship across a cluster of PC’s. It
also should make use of the concept of layers already used in
MPhyScaS in order to define a hierarchical parallel structure.
Each object of MPhyScaS architecture represents one non-

preemptive process. In MPhyScaS, the computation time of
each process and the communication cost between processes
due to the size of required data are known. Thus, we use an
off line scheduling approach. This approach groups processes
that communicate large data with each other in the same pro-
cessor. This decrease the data volume through the network,
decreasing the communication cost of a simulation. In our
approach we also consider a finite number of processors.
Evolutionary algorithms have the ability of finding glob-

ally competitive optima in large and complex search spaces
efficiently [7]. Thus, we based on Genetic Algorithms (GA)
technique to search for a schedule that improve the perfor-
mance of MPhyScaS simulation. The use of GA technique
was possible due to the flexibility of GA to fit any problem.
Due to the same reason, we could extend the fitness function
in order to consider more effects, such as the communication
cost and the waiting time of the processors.
This paper is organized as follows. Section II presents

some of the related works used to compose the proposed
work. Section III details the MPhyScaS definition and its
properties. The methodology used in the hole work is pre-
sented in Section IV. Section V describes a model definition
based on CPN to represent MPhyScaS data which will help
to identify dependencies. Section VI proposes an algorithm
based on GA that consider some new effects in scheduling
process, worried in solving MPhyScaS scheduling problem.
Sections VII and VIII shows the experiments and results
obtained, respectively. And the conclusions of the proposed
work are presented in Section IX.

II. RELATED WORK

In this section we discuss some meta-heuristic proposed
to deal with the scheduling problem.
Xu et al. [8] used Simulated Annealing (SA) for fixed job

scheduling problem. Their objective was to minimize assign-
ment cost of the sequential network model. In [9], Kang et
al.proposed a discrete variant of Particle Swarm Optimization
(PSO) to solve job scheduling problems which all tasks are
non-preemptive and independent of each other. Thus, there is
no communication cost to be worried about. Chong et al. [10]

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

relied on nectar collection of honey bee colonies to create
an algorithm for solving scheduling problem. They consider
only the makespan function to compare its algorithm. The
algorithms cited above are of the improvement type. They
start out with a complete schedule, which may be selected
arbitrarily, and then try to obtain a better schedule by
manipulating the current schedule.
Among these methods, the Genetic Algorithm (GA) has

emerged as a tool that is beneficial for a variety of study
fields. Several studies have been done to solve the scheduling
problem using GA. Kim [11] proposed a permutation-based
elitist genetic algorithm that used serial schedule genera-
tion scheme for solving a large-sized multiple resource-
constrained project scheduling problem. Kim consider the
number of resources, but do not consider waiting time
and communication costs. Moattar et al. [12] proposed a
GA based algorithm that finds schedules where jobs are
partitioned between processors in which total finishing time
and waiting time are minimized. As we did, they used a
fitness function based on aggregation to optimize two criteria
simultaneously, but they did not aggregate the communi-
cation cost to their function. Yang et al. [13] also relies
on GA for solving scheduling problem, but they have a
different optimization criteria: close the gap between the
specification of concurrent, communicating processes and
the heterogeneous processor target without compromising
required real-time performance and cost-effectiveness.

III. MPHYSCAS

MPhyScaS (Multi-Physics and Multi-Scale Solver Envi-
ronment) is an environment dedicated to the automatic de-
velopment of simulators based on the Finite Element Method
(FEM [14]). The term multi-physics is a qualifier to a set of
phenomena that interact in time and space. A multi-physics
system can also be called a system of coupled phenomena.
These phenomena are of different natures and behavior scale.
Usually, simulators based on the Finite Element Method

can be organized in a layers architecture [15]. In the top
layer global iterative loops can be found, corresponding to the
overall scenery of the simulation. The second layer contains
what is called the solution algorithms. Each solution algo-
rithm dictates the way linear systems are built and solved.
The third layer contains the solvers for linear systems and all
the machinery for operating with matrices and vectors. The
last layer is the phenomenon layer, which is responsible for
computing local matrices and vectors at the finite element
level and assembling them into global data structures.
The MPhyScaS architecture establishes a computational

representation for the computational layers using patterns
(see Figure 1). The Kernel level represents the global scenery
level, the level of the solution algorithms is represented by
the Block level, the level of solvers is represented by the
Group level, and the phenomena level is represented by the
Phenomenon level.
The original architecture of MPhyScaS provides support

to the automatic building of sequential simulators only. For

Fig. 1. Computational representation for the layers of the simulator.

instance, it does not have abstractions that could automati-
cally define the distribution of data and procedures and their
relationships across a cluster of PC’s. The MPhyScaS parallel
architecture (called MPhyScaS-P) satisfy a number of new
requirements, including the support of parallel execution of
the simulators in clusters of PC’s.
Whenever the architecture of a computational system

allows a hierarchy of procedures, it may be a good idea to
define a hierarchy of processes in such a way that few of
them would accumulate some very light management tasks.
Benefits for this strategy include [16]: (i) procedures can be
hierarchically synchronized, reducing management concerns
and increasing correctness; (ii) since locality concerns change
along the hierarchy levels, memory management can become
more specialized from top to bottom; (iii) the hierarchy
allows the encapsulation of services and procedures, making
easier the components exchange.
The topology of the procedures in the workflow of

MPhyScaS-S is implemented in MPhyScaS-P in a hierar-
chical form with the aid of a set of processes, which are
responsible for the procedures synchronization. There are
three types of leader processes (see Figure 2):

• Cluster Rank Process: It is responsible for the execu-
tion of the Kernel and to synchronize the beginning and
the end of each one of its level’s tasks, which requires
demands to the lower level process. In a simulation there
is only one ClusterRank process;

• Machine Rank Process: One process is chosen among
all processes running in an individual machine to be its
leader. It is responsible for the execution of procedures
in the Block level and to synchronize the beginning and
the end of each one of it’s level’s tasks, which requires
demands to lower level processes;

• Process Rank Process: It is responsible for the ex-
ecution of the procedures in the Group level. The
ClusterRank and all MachineRank processes are also
ProcessRank processes.

IV. METHODOLOGY
In this section, we describe the methodology used to

identify the dependencies between MPhyScaS processes.
The methodology defines an automatic process whose result
is given as input to our scheduling algorithm. Figure 3
illustrates such a process.
The first step of the methodology automatically creates a

Petri net model to represent the data structure of a given

Processor Processor Processor

Machine

Processor Processor

Machine

000

000

000 001 010 011 020 021 022

100

100 101 110 111

Process 000 executes
procedures in all layers
from Kernel downwards

Ph s

Group kGroup j

Kernel

Block I

Solver Solver

Ph r Ph m Ph n

Fig. 2. Layers with procedures executed by ClusterRank in MPhyScaS-P.

MPhyScaS application. In particular, we use a high level
Petri net called Coloured Petri Nets (CPN). This kind of
Petri net has strongly typed tokes. Thus, depending on its
type, a token might store a complex data type. We explore
this feature during the model simulation to store the identi-
fication of tasks being executed as well as their timestamps.
The model is simulated through the CPNTools [17]. The
simulation output exposes the data dependencies between
MPhyScaS’ processes. This information is given as input
to the proposed Genetic Algorithm (GA) to generate the
schedule. The complexity of the problem relies on the data
dependence because the size of some required data might
be very large, increasing communication costs. The GA also
takes into account the architecture where the application will
execute as well as the communication costs involved.

MPhyScaS

Compiler CPNTools

GA

data

CPN model

data
dependenciesparallel

architecture

schedule

communication
costs

Fig. 3. An overview of the proposed methodology.

V. COLOURED PETRI NET MODEL
A coloured Petri net (CPN) [18] is a bipartite directed

graph, consisting of two types of vertices: (i) places (drawn
as circles), and (ii) transitions (drawn as bars). Places model
the states, and transitions the events of the system. In CPN,
a transition is able to fire (known as enabled) when: (i) it has
one token of the proper type on each of its input arcs, and
(ii) the guard (boolean expression) attached to the transition
holds. An enabled transition can fire and thus remove tokens
from its input places and generate tokens for its output
places. This kind of Petri net has strongly typed tokes. Thus,
depending on its type, a token might store a complex data

type. CPNs allow to model hierarchical structures. The basic
idea is to allow the construction of a large model by using
a number of small models. These small models are called
pages, and are connected to each other by places called ports.
Such places can be input or output types.
The CPN model is automatically generated from the XML

file extracted from the MPhyScaS framework. Such a XML
file contains a complete description of a particular MPhyScaS
simulator. Examples of information extracted from the XML
file to produce the CPN model are: the data produced and
consumed by each process, the size of each data processed
by the simulator, and the position of each process in the
MPhyScaS hierarchy. The MPhyScaS hierarchical structure
restricts the way each process can communicate with others.
Therefore, this information is implicitly used to generate the
CPN model for a particular MPhyScaS simulator.
Analyzing the CPN model, we can automatically generate

a DAG structure, whose nodes are processes and edges
represents the data dependences between processes. The
DAG is then provided as input for the proposed GA proposed
to find schedules for parallel MPhyScaS applications.
In our CPN model, each object of MPhyScaS architecture

is represented by a place, and each request from an object
to another is represented by a transition. The transitions
have guards, so that only tokens with a particular value
can enable a transition to fire. During the model simulation
tokens store the identification of tasks being executed as
well as their timestamps. If a transition firing enables other
transition to fire, we mark the enabled transition as been
dependent on the fired transition. This is a causal dependency,
indicating that the enabled transition can only execute after
the fired transition. When the token reaches the last layer of
the architecture, its value is modified to represent the next
process of the simulation. This is repeated until the entire
CPN model is covered and all dependencies are identified.
To assist our modeling we use the tool CPNTools [17],

which is a mature and well tested tool that supports editing,
simulation, and analysis of CPN.

VI. GENETIC ALGORITHM FOR SCHEDULING PARALLEL
MPHYSCAS PROCESSES

This section describes the application of the proposed
Genetic Algorithm (GA) to generate schedules to improve
the performance of parallel MPhyScaS simulations.

A. Target Application Settings
MPhyScaS’ tasks are non-preemptive. Moreover, we know

in advance the worst-case execution time (WCT) of each
task as well as the communication costs involved. Eventually,
we assume a platform with fixed number of homogeneous
processors. Considering this scenario, we propose to apply
a genetic algorithm to generate an offline schedule for the
parallel execution of MPhyScaS simulations.

B. Genetic Algorithms
Genetic algorithms are a class of global optimization

algorithm based on the theory of natural selection. In GA, the

individuals of a population of potential solutions to a problem
having good genetic characteristics have greater survival
and reproduction possibilities. As a result, the individuals
less adapted to the environment tend to disappear. Thus,
GAs favor the combination of the individuals most apt,
i.e., the candidates most promising for the solution of the
problem [19]. GAs use a random strategy of parallel search,
directed to the search of points of highest fitness, i.e., points
in which the function to be minimized or maximized has
relatively low or high values, respectively.

C. Individual Representation
Each individual in our genetic algorithm is represented by

a sequence of processes. This sequence is divided into blocks
whose sizes are equal to the number of processors. Figure 4
is an example of an individual.

3210

5 2 8 4p
0

3 7 1p
1

9 6p
2

processors processes indices

waiting time execution step

block of processes

Fig. 4. An example of a scheduling individual.

A block represents the processes that will be executed in
parallel, each process in a processor. Each block also has an
index that indicates an execution step (see Figure 4). Note
that, a block can contain less processes than its size. This is
due to the processes dependencies. In the example, processes
1, 4, 6 and 8 depend on processes 2 and 7. This period
without process execution is referred to as wait time. It is
an important factor observed in our algorithm, which tries to
minimize the number of waiting times.

D. Selection and Elitism
In our problem, the individuals are selected through a

fitness-based process, the proportionate-selection method [7].
This method is used to select both individuals that will be
affected by the crossover and the mutation operators. Each
of these operators selects a proportion of the population; and
the values of the proportions is a parameter given in the
experiments.

E. Crossover
The genetic algorithm proposed herein applies a proposed

crossover operator to generate two new individuals into the
new generation. It is a two-level crossover consisting of
(i) getting genes of the parents, and (ii) swapping repeated
information. In the stage of getting the genes, the processors
of the parents are divided into two partitions: even processors
and odd processors. Each partition is given to a new offspring
so that the first new offspring gets the information of even
processors of the first parent and odd processors of the
second parent; the second new offspring gets the information

of odd processors of the first parent and even processors of
the second parent. This process is shown in Figure 5.

parents

offspring

5 2 8 4p
0

3 7 1p
1

9 6p
2

5 2 8 4p
0

2 9 4p
1

9 6p
2

5 3 6p
0

3 7 1p
1

7 8 1p
2

7 8 1p
2

2 9 4p
1

5 3 6p
0

Fig. 5. First step of crossover individuals.

In the swapping repeated information stage, repeated jobs
associated to an offspring are searched, and the repeated
jobs at the same position in the two new offspring will be
considered, as shown in Figure 6. The two new offspring
swap these repeated jobs (Figure 6 also shows the resulting
of this swapping based on the result obtained in Figure 5).
This stage is important to increase the chance of producing
a feasible offspring .

offspring

new
offspring

5 2 6p
0

3 7 4p
1

9 8 1p
2

35 6p
0

13 7p
1

7 8 1p
2

5 3 8 4p
0

2 9 1p
1

7 6p
2

9 6p
2

2 9 4p
1

5 2 8 4p
0

Fig. 6. Second step of crossover individuals.

Although this does not occur every time, when an offspring
is not feasible, we discard it in order to have a new generation
containing only feasible individuals. An example that shows
a crossover that generates unfeasible offspring is depicted in
Figure 7, which shows the first step of the crossover. The
second step of the crossover is depicted in Figure 8.

parents

offspring

1 3 6p
0

7 2p
1

9 4p
2

1 3 6p
0

4 1 8p
1

9 4p
2

5 7p
0

7 2p
1

2 3p
2

2 3p
2

4 1 8p
1

5 7p
0

8

5

9

6

5

9

8

6

Fig. 7. First step of crossover individuals that generates unfeasible
offspring.

One can note that in Figure 8 it is possible to change
processes 4 and 7, since they appear in both the first and the
second offspring. Processes 1 and 2 also appear in the first
and second offspring, yet they cannot be changed because
they do not occupy the same position. Thus, the offspring
generated after the second step of the crossover are not
feasible.

offspring

new
offspring

5 7p
0

4 2p
1

2 3p
2

75p
0

27p
1

2 3p
2

1 3 6p
0

7 1 8p
1

9 4p
2

9 4p
2

4 1 8p
1

1 3 6p
0

5

9

8

6

5

9

8

6

Fig. 8. Second step of crossover individuals that generates unfeasible
offspring.

F. Mutation
The uniform mutation was applied as follows: for each

individual selected for this operation, an integer random
number r is generated and next two random processes are
swaped in the rth execution step. These operators guaran-
tee the modification in the values of communication costs
without violating the precedence of processes.
Figure 9 shows an example of this process. Here, we

suppose that the integer random number generated is r = 3,
so that the third execution step is the one which will be
mutated. Next, we suppose that we selected randomly the
numbers 0 and 2 which indicate that the processes that will
change are the one in the third execution step of the processor
0 and the one in the third execution step of the processor 2.
These processes are marked in Figure 9, which also shows
the result after the mutation.

mutation

5 2 8 4p
0

3 7 1p
1

9 6p
2 9 8p

2

3 7 1p
1

5 2 6p
0 4

Fig. 9. An example of the proposed mutation.

G. Fitness Function
We defined metrics to evaluate the scheduling algorithm

proposed. Such metrics simultaneously evaluate three opti-
mization criteria: i) the total execution time (makespan); ii)
the total idle time of each processor (waiting time); iii) the
time spent with communication between processes.
The first criterion to be optimized is makespan (total

finishing time), which means the maximum execution time
of the last job. The makespan function, represented by
Cmax = max{Ci|i = 1, ..., n}, where Ci is the finishing
execution time of the job i. The second criterion is the
communication cost. Here, we represented this function by
T , where T =

∑
tij , ∀i, j, assuming that i, j are two

processes that need to communicate and that tij is the
time spent in the communication. The third criterion is the
waiting time, which corresponds to the total idle time of
the processors. The waiting time function is represented by∑n

j=1
WTj , which means the sum of the waiting times of

each processor j.
Although in the MPhyScaS problem the optimization cri-

terion consists of the minimization of these three functions,

we put these criteria together in the following function

γ = ω1 · Cmax + ω2 · T + ω3 ·
n∑

j=1

WTj ,

where ω1, ω2 and ω3 are weights for giving different rele-
vance to each function.

VII. EXPERIMENT SETUP

This section describes the scenarios explored in the exper-
iment conducted to evaluate our scheduling algorithm. We
use a benchmark composed of three different MPhyScaS’
simulators, which are represented through DAGs specifying
the processes and their dependences.
The experiment explores two parallel architectures com-

posed of fixed number of homogeneous processors. The dif-
ference is the number of processors in each architecture: the
first one has 3 processors, and the second, has 6 processors.
We compare our algorithm against three scheduling al-

gorithms: List Scheduling [20], Longest Processing Time
(LPT) [21], and Shortest Processing Time (SPT) [4].
Combining the three simulators, the two parallel architec-

ture, and the four scheduling algorithms give us 24 execution
scenarios. We used the data of ten simulations to estimate
the number of samples required, we found that we need
about nine samples to calculate the mean value for the fitness
function, assuming a confidence interval of 95%. Based on
this estimation, we collected data from 30 simulations of each
scenario. We calculate the arithmetic mean and the standard
deviation of each scenario.
In list scheduling algorithm we use the MPhyScaS ar-

chitecture for determining the priority of the processes.
Processes in the same level have the same priority. The
Kernel level has the highest priority and the Quantity level
(a sublevel of the Phenomenon level) has the lowest priority.
For sequential simulation of the problems, the communi-

cation cost and the waiting time functions have their values
nulled, and the makespan function has its maximum value.
The results for sequential execution will also be presented.
In the experiments, we set the parameters to values:
• Makespan (ω1): 60%

• Communication cost (ω2): 30%

• Waiting time (ω3): 10%

These parameters are based on the characteristics of
MPhyScaS simulators. One might change them to assign a
distinct level of importance for each optimization criteria,
generating a different scheduling as result.
We evaluate the proposed GA algorithm using two popu-

lation sizes: one with 50 indiviuals; and another with 100

individuals, using cross probability equals to 0.9 and the
mutation rate equals to 0.1.

VIII. RESULTS

In this section, we will present the results for the three dif-
ferent MPhyScaS simulators, which are represented through
DAGs specifying the processes and their dependences.

A. The First Simulator
The DAG that represents this simulator has 50 nodes

(processes) and 61 edges (dependences). These dependences
were found by analyzing the Petri net model that corresponds
to this DAG. A maximum of 8 levels of nesting is found in
dependences of this graph.
The value obtained using the fitness function for the

sequential execution of the first problem is equal to 1446.6.
Table I shows the results to list scheduling, LPT and SPT
for both parallel architectures (composed by 3 processors
and 6 processors). The results found by the proposed genetic
algorithm for 500, 1000, and 2000 iterations are presented in
Table II. One can note that we also present in both tables the
percentage gain obtained based on the sequential execution.
For the GA algorithm the percentage gain presented is
calculated to the result obtained after 2000 iterations.

TABLE I
RESULTS FOR LIST SCHEDULING, LPT AND SPT

3 processors
List Scheduling LPT SPT

Mean 969.9200 1045.5100 1017.1700

S.D. 36.7211 37.2302 40.0182

Gain (%) 32.9517 27.7264 29.6854

6 processors
List Scheduling LPT SPT

Mean 1066.7400 1104.3200 1132.8300

S.D. 114.8803 120.1449 122.5676

Gain (%) 26.2588 23.6610 21.6902

TABLE II
RESULTS FOR GA

Fitness
3 processors

Iterations 50 individuals 100 individuals

500 Mean 842.2633 833.4733

S.D. 31.0516 21.0644

1000 Mean 839.9333 829.4833

S.D. 29.8499 24.1853

2000 Mean 837.4533 828.8533

S.D. 29.3756 24.0546

Gain (%) 42.1088 42.7033

6 processors
Iterations 50 individuals 100 individuals

500 Mean 707.2600 697.2100

S.D. 37.0818 36.6040

1000 Mean 689.2900 686.1900

S.D. 38.0706 35.5946

2000 Mean 682.0100 680.0800

S.D. 36.3665 32.2251

Gain (%) 52.8543 52.9877

The improvement of the proposed algorithm is depicted in
Figure 10. Figure 10(a) shows the convergence for the archi-
tecture with 3 processors, while the one for the architecture
with 6 processors is shown in Figure 10(b).
Considering the first architecture, at the 500th iteration

the 100-individual population had already presented better
schedules than the 50-individual population at the end of
2000 iterations. Note that in both situation the 100-individual

 820

 840

 860

 880

 900

 920

 940

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

va
lu

e

Iterations

50 individuals
100 individuals

(a)

 700

 750

 800

 850

 900

0 200 400 600 800 1000 1200 1400 1600 1800 2000
F

itn
es

s
va

lu
e

Iterations

50 individuals
100 individuals

(b)

Fig. 10. The convergence of the proposed genetic algorithm for 50 and
100 individuals: (a) using first architecture; (b) using second architecture.

population converged faster than the 50-individual popula-
tion.

B. The Second Simulator
The second DAG has 126 nodes (processes) and 223 edges

(dependences), which were found by the Petri net model.
This graph has 16 levels of nesting as its maximum.
The value obtained using the fitness function for the se-

quential execution of the second problem is equal to 3510.0.
The list scheduling, LPT and SPT results are presented in
Table III for both parallel architecture considered. Table IV
shows the results obtained for the same scenarios using the
proposed GA algorithm.

TABLE III
RESULTS FOR LIST SCHEDULING, LPT AND SPT

3 processors
List Scheduling LPT SPT

Mean 2592.1100 2580.9700 2618.6800

S.D. 157.4361 154.3924 159.9462

Gain (%) 26.1507 26.4681 25.3937

6 processors
List Scheduling LPT SPT

Mean 2944.8700 2817.8200 2842.7300

S.D. 158.5764 155.0172 160.9108

Gain (%) 16.1006 19.7202 19.0105

The convergence during all iterations of the latest genetic
algorithm results presented can be seen in Figure 11.

TABLE IV
RESULTS FOR GA

Fitness
3 processors

Iterations 50 individuals 100 individuals

500 Mean 2447.6730 2445.8930

S.D. 62.3827 61.3071

1000 Mean 2399.9230 2401.9930

S.D. 59.5612 74.9665

2000 Mean 2379.2830 2385.7330

S.D. 63.3114 70.7054

Gain (%) 32.2141 32.0304

6 processors
Iterations 50 individuals 100 individuals

500 Mean 2254.2800 2242.7870

S.D. 74.0134 62.4255

1000 Mean 2149.6600 2140.3770

S.D. 66.9043 65.4855

2000 Mean 2077.6200 2068.6470

S.D. 67.2494 59.3870

Gain (%) 40.8085 41.0642

One can note that this second problem is more difficult
to solve than the previous one so that both population size
behaved almost in the same way. For this problem, the fact of
having more individuals did not contribute to the population
with 100 individuals due to the complexity of the problem.

C. The Third Simulator
The DAG that represents the third simulator has 150

nodes (processes) and 237 edges (dependences). These de-
pendences were found by analyzing the Petri net model that
corresponds to this problem. A maximum of 12 levels of
nesting is found in dependences of this graph.
The value obtained using the fitness function for the

sequential execution of the third problem is equal to 5680.8.
The results to the list scheduling, LPT and SPT are presented
in Table V considering both parallel architecture. Table VI
shows the results also for both parallel architecture consid-
ered found by the proposed genetic algorithm for 500, 1000

and 2000 iterations.

TABLE V
RESULTS FOR LIST SCHEDULING, LPT AND SPT

3 processors
List Scheduling LPT SPT

Mean 5464.2300 5356.8000 5495.4900

S.D. 256.9011 255.3976 257.7374

Gain (%) 3.8123 5.7034 3.2620

6 processors
List Scheduling LPT SPT

Mean 6727.8600 6727.8000 6982.8900

S.D. 259.8337 258.9764 260.4492

Gain (%) −18.4315 −18.4305 −22.9209

Figure 12 depicts the convergence for the presented results.
The convergence related to the architecture with 3 processors
is depicted in Figure 12(a) and the one related to the
architecture with 6 processors, in Figure 12(b).
Looking at the results for the second architecture, one

can note that only GA algorithm gets some improvement.

 2350

 2400

 2450

 2500

 2550

 2600

 2650

 2700

 2750

 2800

 2850

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

va
lu

e

Iterations

50 individuals
100 individuals

(a)

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

0 200 400 600 800 1000 1200 1400 1600 1800 2000
F

itn
es

s
va

lu
e

Iterations

50 individuals
100 individuals

(b)

Fig. 11. The convergence of the proposed genetic algorithm for 50 and
100 individuals: (a) using first architecture; (b) using second architecture.

TABLE VI
RESULTS FOR GA

Fitness
3 processors

Iterations 50 individuals 100 individuals

500 Mean 4925.2800 4838.9400

S.D. 101.4804 111.0909

1000 Mean 4877.0000 4796.0000

S.D. 96.3841 117.8795

2000 Mean 4852.7400 4772.9200

S.D. 102.7384 111.5300

Gain (%) 14.5765 15.9816

6 processors
Iterations 50 individuals 100 individuals

500 Mean 5350.2400 5294.6800

S.D. 147.6926 107.5116

1000 Mean 5269.4200 5221.0000

S.D. 148.4255 107.9098

2000 Mean 5232.9200 5181.1800

S.D. 154.3999 106.3545

Gain (%) 7.8841 8.7949

The other algorithms do not get improvement because of the
communication cost and waiting time which spent more time
than the saved one.

Using the data of 30 samples of each simulated scenario,
we found that only 0.8% of the generated individuals were
unfeasible, assuming a confidence interval of 95%.

 4750

 4800

 4850

 4900

 4950

 5000

 5050

 5100

 5150

 5200

 5250

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

va
lu

e

Iterations

50 individuals
100 individuals

(a)

 5100

 5200

 5300

 5400

 5500

 5600

 5700

 5800

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F
itn

es
s

va
lu

e

Iterations

50 individuals
100 individuals

(b)

Fig. 12. The convergence of the proposed genetic algorithm for 50 and
100 individuals: (a) using first architecture; (b) using second architecture.

IX. CONCLUSIONS

This work explored an important factor related to the
parallelization of simulators based on the Finite Element
Method (FEM [14]), i.e. multi-physics simulators. We pro-
posed a scheduling algorithm, based on genetic algorithms,
to explore the job dependencies in order to define a schedule
near to the optimal one. The existent algorithms usually
consider only the makespan (total completion time) function
to obtain the schedule. This process can be very complex
when considering other effects: the architecture where the
simulations will run; the communication cost between jobs;
and the waiting time of each processor. Considering other
effects leads us to create a complex environment composed of
great quantity of variables. This makes the simple scheduling
algorithms obsolete. The algorithm proposed in this paper
considers three optimization criteria: i) the total execution
time (makespan); ii) the total idle time of each processor
(waiting time); iii) the time spent with communication be-
tween processes. It also takes into account the architecture
where the simulations will be run.
We evaluated our approach against three well known

algorithms and three multi-physics simulators. The results
demonstrated that our approach was able to find excellent
schedule for the parallel simulators in the benchmark.
As a future work, we will adapt the algorithm to consider

parallel platforms with heterogeneous processors. We will

also compare our approach to other meta-heuristics.

REFERENCES
[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer

Publishing Company, Incorporated, 2008.
[2] K. Aida and H. Casanova, “Scheduling mixed-parallel applications

with advance reservations,” in HPDC ’08: Proceedings of the 17th
international symposium on High performance distributed computing.
New York, NY, USA: ACM, 2008, pp. 65–74.

[3] J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt, and J. Weglarz,
Handbook on Scheduling: Models and Methods for Advanced Planning
(International Handbooks on Information Systems). Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2007.

[4] J. Leung, L. Kelly, and J. H. Anderson, Handbook of Scheduling:
Algorithms, Models, and Performance Analysis. Boca Raton, FL,
USA: CRC Press, Inc., 2004.

[5] A. W. J. Kolen, A. H. G. R. Kan, C. P. M. van Hoesel, and A. P. M.
Wagelmans, “Sensitivity analysis of list scheduling heuristics,” Dis-
crete Appl. Math., vol. 55, no. 2, pp. 145–162, 1994.

[6] O. Sinnen and L. Sousa, “Comparison of contention aware list schedul-
ing heuristics for cluster computing,” in ICPPW ’01: Proceedings of
the 2001 International Conference on Parallel Processing Workshops.
Washington, DC, USA: IEEE Computer Society, 2001, p. 382.

[7] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Program-
ming - An Introduction. San Francisco, CA: Morgan Kaufmann,
1998.

[8] J. Xu, H. Sun, and W. Yang, “Heuristic algorithm for fixed job schedul-
ing problem,” in ICNC ’07: Proceedings of the Third International
Conference on Natural Computation (ICNC 2007). Washington, DC,
USA: IEEE Computer Society, 2007, pp. 698–701.

[9] Q. Kang, H. He, H. Wang, and C. Jiang, “A novel discrete particle
swarm optimization algorithm for job scheduling in grids,” in ICNC
’08: Proceedings of the 2008 Fourth International Conference on
Natural Computation. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 401–405.

[10] C. S. Chong, A. I. Sivakumar, M. Y. H. Low, and K. L. Gay, “A bee
colony optimization algorithm to job shop scheduling,” in WSC ’06:
Proceedings of the 38th conference on Winter simulation. Winter
Simulation Conference, 2006, pp. 1954–1961.

[11] J.-L. Kim, “Permutation-based elitist genetic algorithm using serial
scheme for large-sized resource-constrained project scheduling,” in
WSC ’07: Proceedings of the 39th conference on Winter simulation.
Piscataway, NJ, USA: IEEE Press, 2007, pp. 2112–2118.

[12] E. Moattar, A. Rahmani, and M. Derakhshi, “Job scheduling in
multi processor architecture using genetic algorithm,” Innovations
in Information Technology, 2007. Innovations ’07. 4th International
Conference on, pp. 248–251, Nov. 2007.

[13] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins, “Energy-aware runtime scheduling for embedded-
multiprocessor socs,” IEEE Des. Test, vol. 18, no. 5, pp. 46–58, 2001.

[14] D. L. Logan, A First Course in the Finite Element Method, 3rd ed.
Pacific Grove, CA, USA: Brooks/Cole Publishing Co., 2002.

[15] F. C. G. Santos, E. R. R. J. Brito, and J. M. A. Barbosa, “Dealing
with coupled phenomena in the finite element method,” XXVII Latin
American Congress on Computational Methods in Engineering, 2006.

[16] F. C. G. Santos, J. M. A. Barbosa, J. M. Bezerra, and E. R. R. J.
Brito, “An architecture for the automatic development of high perfor-
mance multi-physics simulators,” Fourth International Conference on
Advanced Computational Methods in Engineering (ACOMEN 2008),
2008.

[17] CPNGroup, “Cpntools: Computer tool for coloured petri nets,” 2009,
url: http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[18] E. Roubtsova, “Property specification for coloured petri nets,” in
Systems, Man and Cybernetics, 2004 IEEE International Conference
on, vol. 3, Oct. 2004, pp. 2617–2622 vol.3.

[19] A. P. Engelbrecht, Computational Intelligence: An Introduction. NJ:
Wiley Publishing, jan 2007.

[20] B. Simion, C. Leordeanu, F. Pop, and V. Cristea, “A hybrid algorithm
for scheduling workflow applications in grid environments (icpdp),” in
OTM Conferences (2), 2007, pp. 1331–1348.

[21] K. Altendorfer, B. Kabelka, and W. Stocher, “A new dispatching
rule for optimizing machine utilization at a semiconductor test field,”
Advanced Semiconductor Manufacturing Conference, 2007. ASMC
2007. IEEE/SEMI, pp. 188–193, June 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

